3.1.62 \(\int \frac {(a+a \sec (e+f x))^{5/2}}{(c-c \sec (e+f x))^3} \, dx\) [62]

3.1.62.1 Optimal result
3.1.62.2 Mathematica [C] (verified)
3.1.62.3 Rubi [A] (verified)
3.1.62.4 Maple [B] (verified)
3.1.62.5 Fricas [B] (verification not implemented)
3.1.62.6 Sympy [F]
3.1.62.7 Maxima [F(-1)]
3.1.62.8 Giac [F]
3.1.62.9 Mupad [F(-1)]

3.1.62.1 Optimal result

Integrand size = 28, antiderivative size = 104 \[ \int \frac {(a+a \sec (e+f x))^{5/2}}{(c-c \sec (e+f x))^3} \, dx=\frac {2 a^{5/2} \arctan \left (\frac {\sqrt {a} \tan (e+f x)}{\sqrt {a+a \sec (e+f x)}}\right )}{c^3 f}+\frac {2 a^2 \cot (e+f x) \sqrt {a+a \sec (e+f x)}}{c^3 f}+\frac {8 \cot ^5(e+f x) (a+a \sec (e+f x))^{5/2}}{5 c^3 f} \]

output
2*a^(5/2)*arctan(a^(1/2)*tan(f*x+e)/(a+a*sec(f*x+e))^(1/2))/c^3/f+8/5*cot( 
f*x+e)^5*(a+a*sec(f*x+e))^(5/2)/c^3/f+2*a^2*cot(f*x+e)*(a+a*sec(f*x+e))^(1 
/2)/c^3/f
 
3.1.62.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.

Time = 1.13 (sec) , antiderivative size = 73, normalized size of antiderivative = 0.70 \[ \int \frac {(a+a \sec (e+f x))^{5/2}}{(c-c \sec (e+f x))^3} \, dx=\frac {2 a^3 \left (4+3 \operatorname {Hypergeometric2F1}\left (-\frac {5}{2},1,-\frac {3}{2},1-\sec (e+f x)\right )+5 \sec (e+f x)\right ) \tan (e+f x)}{15 c^3 f (-1+\sec (e+f x))^3 \sqrt {a (1+\sec (e+f x))}} \]

input
Integrate[(a + a*Sec[e + f*x])^(5/2)/(c - c*Sec[e + f*x])^3,x]
 
output
(2*a^3*(4 + 3*Hypergeometric2F1[-5/2, 1, -3/2, 1 - Sec[e + f*x]] + 5*Sec[e 
 + f*x])*Tan[e + f*x])/(15*c^3*f*(-1 + Sec[e + f*x])^3*Sqrt[a*(1 + Sec[e + 
 f*x])])
 
3.1.62.3 Rubi [A] (verified)

Time = 0.41 (sec) , antiderivative size = 92, normalized size of antiderivative = 0.88, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.214, Rules used = {3042, 4392, 3042, 4375, 364, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(a \sec (e+f x)+a)^{5/2}}{(c-c \sec (e+f x))^3} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (a \csc \left (e+f x+\frac {\pi }{2}\right )+a\right )^{5/2}}{\left (c-c \csc \left (e+f x+\frac {\pi }{2}\right )\right )^3}dx\)

\(\Big \downarrow \) 4392

\(\displaystyle -\frac {\int \cot ^6(e+f x) (\sec (e+f x) a+a)^{11/2}dx}{a^3 c^3}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\int \frac {\left (\csc \left (e+f x+\frac {\pi }{2}\right ) a+a\right )^{11/2}}{\cot \left (e+f x+\frac {\pi }{2}\right )^6}dx}{a^3 c^3}\)

\(\Big \downarrow \) 4375

\(\displaystyle \frac {2 \int \frac {\cot ^6(e+f x) (\sec (e+f x) a+a)^3 \left (\frac {a \tan ^2(e+f x)}{\sec (e+f x) a+a}+2\right )^2}{\frac {a \tan ^2(e+f x)}{\sec (e+f x) a+a}+1}d\left (-\frac {\tan (e+f x)}{\sqrt {\sec (e+f x) a+a}}\right )}{c^3 f}\)

\(\Big \downarrow \) 364

\(\displaystyle \frac {2 \int \left (4 (\sec (e+f x) a+a)^3 \cot ^6(e+f x)+a^2 (\sec (e+f x) a+a) \cot ^2(e+f x)-\frac {a^3}{\frac {a \tan ^2(e+f x)}{\sec (e+f x) a+a}+1}\right )d\left (-\frac {\tan (e+f x)}{\sqrt {\sec (e+f x) a+a}}\right )}{c^3 f}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {2 \left (a^{5/2} \arctan \left (\frac {\sqrt {a} \tan (e+f x)}{\sqrt {a \sec (e+f x)+a}}\right )+a^2 \cot (e+f x) \sqrt {a \sec (e+f x)+a}+\frac {4}{5} \cot ^5(e+f x) (a \sec (e+f x)+a)^{5/2}\right )}{c^3 f}\)

input
Int[(a + a*Sec[e + f*x])^(5/2)/(c - c*Sec[e + f*x])^3,x]
 
output
(2*(a^(5/2)*ArcTan[(Sqrt[a]*Tan[e + f*x])/Sqrt[a + a*Sec[e + f*x]]] + a^2* 
Cot[e + f*x]*Sqrt[a + a*Sec[e + f*x]] + (4*Cot[e + f*x]^5*(a + a*Sec[e + f 
*x])^(5/2))/5))/(c^3*f)
 

3.1.62.3.1 Defintions of rubi rules used

rule 364
Int[(((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_))/((c_) + (d_.)*(x_)^2), 
x_Symbol] :> Int[ExpandIntegrand[(e*x)^m*((a + b*x^2)^p/(c + d*x^2)), x], x 
] /; FreeQ[{a, b, c, d, e, m}, x] && NeQ[b*c - a*d, 0] && IGtQ[p, 0] && (In 
tegerQ[m] || IGtQ[2*(m + 1), 0] ||  !RationalQ[m])
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4375
Int[cot[(c_.) + (d_.)*(x_)]^(m_.)*(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_))^(n 
_.), x_Symbol] :> Simp[-2*(a^(m/2 + n + 1/2)/d)   Subst[Int[x^m*((2 + a*x^2 
)^(m/2 + n - 1/2)/(1 + a*x^2)), x], x, Cot[c + d*x]/Sqrt[a + b*Csc[c + d*x] 
]], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0] && IntegerQ[m/2] && I 
ntegerQ[n - 1/2]
 

rule 4392
Int[(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_.)*(csc[(e_.) + (f_.)*(x_)]*( 
d_.) + (c_))^(n_.), x_Symbol] :> Simp[((-a)*c)^m   Int[Cot[e + f*x]^(2*m)*( 
c + d*Csc[e + f*x])^(n - m), x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && E 
qQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && IntegerQ[m] && RationalQ[n] &&  !( 
IntegerQ[n] && GtQ[m - n, 0])
 
3.1.62.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(266\) vs. \(2(92)=184\).

Time = 70.08 (sec) , antiderivative size = 267, normalized size of antiderivative = 2.57

method result size
default \(\frac {2 a^{2} \sqrt {a \left (\sec \left (f x +e \right )+1\right )}\, \left (5 \sqrt {-\frac {\cos \left (f x +e \right )}{\cos \left (f x +e \right )+1}}\, \operatorname {arctanh}\left (\frac {\sin \left (f x +e \right )}{\left (\cos \left (f x +e \right )+1\right ) \sqrt {-\frac {\cos \left (f x +e \right )}{\cos \left (f x +e \right )+1}}}\right ) \cos \left (f x +e \right )^{2}-10 \,\operatorname {arctanh}\left (\frac {\sin \left (f x +e \right )}{\left (\cos \left (f x +e \right )+1\right ) \sqrt {-\frac {\cos \left (f x +e \right )}{\cos \left (f x +e \right )+1}}}\right ) \sqrt {-\frac {\cos \left (f x +e \right )}{\cos \left (f x +e \right )+1}}\, \cos \left (f x +e \right )+9 \cos \left (f x +e \right )^{2} \cot \left (f x +e \right )+5 \,\operatorname {arctanh}\left (\frac {\sin \left (f x +e \right )}{\left (\cos \left (f x +e \right )+1\right ) \sqrt {-\frac {\cos \left (f x +e \right )}{\cos \left (f x +e \right )+1}}}\right ) \sqrt {-\frac {\cos \left (f x +e \right )}{\cos \left (f x +e \right )+1}}-10 \cos \left (f x +e \right ) \cot \left (f x +e \right )+5 \cot \left (f x +e \right )\right )}{5 c^{3} f \left (\cos \left (f x +e \right )-1\right )^{2}}\) \(267\)

input
int((a+a*sec(f*x+e))^(5/2)/(c-c*sec(f*x+e))^3,x,method=_RETURNVERBOSE)
 
output
2/5/c^3/f*a^2*(a*(sec(f*x+e)+1))^(1/2)/(cos(f*x+e)-1)^2*(5*(-cos(f*x+e)/(c 
os(f*x+e)+1))^(1/2)*arctanh(sin(f*x+e)/(cos(f*x+e)+1)/(-cos(f*x+e)/(cos(f* 
x+e)+1))^(1/2))*cos(f*x+e)^2-10*arctanh(sin(f*x+e)/(cos(f*x+e)+1)/(-cos(f* 
x+e)/(cos(f*x+e)+1))^(1/2))*(-cos(f*x+e)/(cos(f*x+e)+1))^(1/2)*cos(f*x+e)+ 
9*cos(f*x+e)^2*cot(f*x+e)+5*arctanh(sin(f*x+e)/(cos(f*x+e)+1)/(-cos(f*x+e) 
/(cos(f*x+e)+1))^(1/2))*(-cos(f*x+e)/(cos(f*x+e)+1))^(1/2)-10*cos(f*x+e)*c 
ot(f*x+e)+5*cot(f*x+e))
 
3.1.62.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 207 vs. \(2 (92) = 184\).

Time = 0.31 (sec) , antiderivative size = 441, normalized size of antiderivative = 4.24 \[ \int \frac {(a+a \sec (e+f x))^{5/2}}{(c-c \sec (e+f x))^3} \, dx=\left [\frac {5 \, {\left (a^{2} \cos \left (f x + e\right )^{2} - 2 \, a^{2} \cos \left (f x + e\right ) + a^{2}\right )} \sqrt {-a} \log \left (-\frac {8 \, a \cos \left (f x + e\right )^{3} - 4 \, {\left (2 \, \cos \left (f x + e\right )^{2} - \cos \left (f x + e\right )\right )} \sqrt {-a} \sqrt {\frac {a \cos \left (f x + e\right ) + a}{\cos \left (f x + e\right )}} \sin \left (f x + e\right ) - 7 \, a \cos \left (f x + e\right ) + a}{\cos \left (f x + e\right ) + 1}\right ) \sin \left (f x + e\right ) + 4 \, {\left (9 \, a^{2} \cos \left (f x + e\right )^{3} - 10 \, a^{2} \cos \left (f x + e\right )^{2} + 5 \, a^{2} \cos \left (f x + e\right )\right )} \sqrt {\frac {a \cos \left (f x + e\right ) + a}{\cos \left (f x + e\right )}}}{10 \, {\left (c^{3} f \cos \left (f x + e\right )^{2} - 2 \, c^{3} f \cos \left (f x + e\right ) + c^{3} f\right )} \sin \left (f x + e\right )}, \frac {5 \, {\left (a^{2} \cos \left (f x + e\right )^{2} - 2 \, a^{2} \cos \left (f x + e\right ) + a^{2}\right )} \sqrt {a} \arctan \left (\frac {2 \, \sqrt {a} \sqrt {\frac {a \cos \left (f x + e\right ) + a}{\cos \left (f x + e\right )}} \cos \left (f x + e\right ) \sin \left (f x + e\right )}{2 \, a \cos \left (f x + e\right )^{2} + a \cos \left (f x + e\right ) - a}\right ) \sin \left (f x + e\right ) + 2 \, {\left (9 \, a^{2} \cos \left (f x + e\right )^{3} - 10 \, a^{2} \cos \left (f x + e\right )^{2} + 5 \, a^{2} \cos \left (f x + e\right )\right )} \sqrt {\frac {a \cos \left (f x + e\right ) + a}{\cos \left (f x + e\right )}}}{5 \, {\left (c^{3} f \cos \left (f x + e\right )^{2} - 2 \, c^{3} f \cos \left (f x + e\right ) + c^{3} f\right )} \sin \left (f x + e\right )}\right ] \]

input
integrate((a+a*sec(f*x+e))^(5/2)/(c-c*sec(f*x+e))^3,x, algorithm="fricas")
 
output
[1/10*(5*(a^2*cos(f*x + e)^2 - 2*a^2*cos(f*x + e) + a^2)*sqrt(-a)*log(-(8* 
a*cos(f*x + e)^3 - 4*(2*cos(f*x + e)^2 - cos(f*x + e))*sqrt(-a)*sqrt((a*co 
s(f*x + e) + a)/cos(f*x + e))*sin(f*x + e) - 7*a*cos(f*x + e) + a)/(cos(f* 
x + e) + 1))*sin(f*x + e) + 4*(9*a^2*cos(f*x + e)^3 - 10*a^2*cos(f*x + e)^ 
2 + 5*a^2*cos(f*x + e))*sqrt((a*cos(f*x + e) + a)/cos(f*x + e)))/((c^3*f*c 
os(f*x + e)^2 - 2*c^3*f*cos(f*x + e) + c^3*f)*sin(f*x + e)), 1/5*(5*(a^2*c 
os(f*x + e)^2 - 2*a^2*cos(f*x + e) + a^2)*sqrt(a)*arctan(2*sqrt(a)*sqrt((a 
*cos(f*x + e) + a)/cos(f*x + e))*cos(f*x + e)*sin(f*x + e)/(2*a*cos(f*x + 
e)^2 + a*cos(f*x + e) - a))*sin(f*x + e) + 2*(9*a^2*cos(f*x + e)^3 - 10*a^ 
2*cos(f*x + e)^2 + 5*a^2*cos(f*x + e))*sqrt((a*cos(f*x + e) + a)/cos(f*x + 
 e)))/((c^3*f*cos(f*x + e)^2 - 2*c^3*f*cos(f*x + e) + c^3*f)*sin(f*x + e)) 
]
 
3.1.62.6 Sympy [F]

\[ \int \frac {(a+a \sec (e+f x))^{5/2}}{(c-c \sec (e+f x))^3} \, dx=- \frac {\int \frac {a^{2} \sqrt {a \sec {\left (e + f x \right )} + a}}{\sec ^{3}{\left (e + f x \right )} - 3 \sec ^{2}{\left (e + f x \right )} + 3 \sec {\left (e + f x \right )} - 1}\, dx + \int \frac {2 a^{2} \sqrt {a \sec {\left (e + f x \right )} + a} \sec {\left (e + f x \right )}}{\sec ^{3}{\left (e + f x \right )} - 3 \sec ^{2}{\left (e + f x \right )} + 3 \sec {\left (e + f x \right )} - 1}\, dx + \int \frac {a^{2} \sqrt {a \sec {\left (e + f x \right )} + a} \sec ^{2}{\left (e + f x \right )}}{\sec ^{3}{\left (e + f x \right )} - 3 \sec ^{2}{\left (e + f x \right )} + 3 \sec {\left (e + f x \right )} - 1}\, dx}{c^{3}} \]

input
integrate((a+a*sec(f*x+e))**(5/2)/(c-c*sec(f*x+e))**3,x)
 
output
-(Integral(a**2*sqrt(a*sec(e + f*x) + a)/(sec(e + f*x)**3 - 3*sec(e + f*x) 
**2 + 3*sec(e + f*x) - 1), x) + Integral(2*a**2*sqrt(a*sec(e + f*x) + a)*s 
ec(e + f*x)/(sec(e + f*x)**3 - 3*sec(e + f*x)**2 + 3*sec(e + f*x) - 1), x) 
 + Integral(a**2*sqrt(a*sec(e + f*x) + a)*sec(e + f*x)**2/(sec(e + f*x)**3 
 - 3*sec(e + f*x)**2 + 3*sec(e + f*x) - 1), x))/c**3
 
3.1.62.7 Maxima [F(-1)]

Timed out. \[ \int \frac {(a+a \sec (e+f x))^{5/2}}{(c-c \sec (e+f x))^3} \, dx=\text {Timed out} \]

input
integrate((a+a*sec(f*x+e))^(5/2)/(c-c*sec(f*x+e))^3,x, algorithm="maxima")
 
output
Timed out
 
3.1.62.8 Giac [F]

\[ \int \frac {(a+a \sec (e+f x))^{5/2}}{(c-c \sec (e+f x))^3} \, dx=\int { -\frac {{\left (a \sec \left (f x + e\right ) + a\right )}^{\frac {5}{2}}}{{\left (c \sec \left (f x + e\right ) - c\right )}^{3}} \,d x } \]

input
integrate((a+a*sec(f*x+e))^(5/2)/(c-c*sec(f*x+e))^3,x, algorithm="giac")
 
output
sage0*x
 
3.1.62.9 Mupad [F(-1)]

Timed out. \[ \int \frac {(a+a \sec (e+f x))^{5/2}}{(c-c \sec (e+f x))^3} \, dx=\int \frac {{\left (a+\frac {a}{\cos \left (e+f\,x\right )}\right )}^{5/2}}{{\left (c-\frac {c}{\cos \left (e+f\,x\right )}\right )}^3} \,d x \]

input
int((a + a/cos(e + f*x))^(5/2)/(c - c/cos(e + f*x))^3,x)
 
output
int((a + a/cos(e + f*x))^(5/2)/(c - c/cos(e + f*x))^3, x)